J. Fluid Mech. (2008), vol. 596, pp. 21-47.  (© 2008 Cambridge University Press 21
doi:10.1017/S0022112007009329  Printed in the United Kingdom

Dense flows of cohesive granular materials

PIERRE G. ROC%NON”, JEAN-NOEL ROUXI,
MOHAMED NAAIM? AND FRANCOIS CHEVOIR!
'LMSGC, Institut Navier, 2 allée Kepler, 77 420 Champs sur Marne, France

2CEMAGREF, 2 rue de la Papeterie, BP 76, 38402 Saint-Martin d’Héres, France
chevoir@lIcpe.fr

(Received 27 April 2007 and in revised form 24 September 2007)

Using molecular dynamic simulations, we investigate the characteristics of dense flows
of model cohesive grains. We describe their rheological behaviour and its origin at
the scale of the grains and of their organization. Homogeneous plane shear flows
give access to the constitutive law of cohesive grains which can be expressed by
a simple friction law similar to the case of cohesionless grains, but intergranular
cohesive forces strongly enhance the resistance to the shear. Then we show the
consequence on flows down a slope: a plugged region develops at the free surface
where the cohesion intensity is the strongest. Moreover, we measure various indicators
of the microstructure within flows which evidence the aggregation of grains owing to
cohesion and we analyse the properties of the contact network (force distributions and
anisotropy). This provides new insights into the interplay between the local contact
law, the microstructure and the macroscopic behavior of cohesive grains. Movies are
available with the online version of the paper.

1. Introduction

Dense flows of cohesionless grains have a rich rheological behaviour, as has been
pointed out during the last 20 years or so. However, real granular materials often
present significant inter-particular cohesive forces resulting from different physical
origins: van der Waals forces for small enough grains such as clay particles, powders
(Rietema 1991; Quintanilla, Castellanos & Valverde 2003 ; Castellanos 2005) or third
bodies in tribology (lordanoff et al 2001, 2002), capillary forces in humid grains as
in unsaturated soils or wet snow, and solid bridges in sintered powders (Miclea et al.
2005) or when liquid menisci freeze (Hatzes et al. 1991). How do these cohesive forces
affect dense granular flows? Up to now, this question has been largely ignored.

In this paper, we provide new insights into the understanding of dense flows
of cohesive grains. Flow characteristics are investigated through discrete numerical
simulations (with a standard molecular dynamics method) which enable us to
easily control the intensity of cohesion and provide information at the level of
the grains, most often inaccessible to experiments. We simulate model cohesive
grains with a simple intergranular adhesive force which captures the main feature
of any cohesion model, the tensile strength of contacts. From homogeneous plane
shear flows, prescribing pressure and shear rate, we measure a strong evolution of
the constitutive law as the intergranular cohesion is increased, and we relate this
macroscopic behaviour to the micro-mechanical properties of the grains and their
microstructural organization. The understanding of the effect of intergranular cohesive
force on constitutive law enables us to discuss practically relevant flows down inclined
planes, which are more complex since stresses are no longer homogeneous.
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FiGURE 1. Flow geometries: plane shear (a) between two rough walls and (») without wall;
(c) rough inclined plane; (—) periodic boundary conditions, (black grains) rough walls.

Section 2 presents the knowledge about the effect of cohesion on granular flows. The
flow geometries and the interaction model are described in §3. From homogeneous
plane shear flows and using dimensionless parameters identified in § 4, the macroscopic
constitutive law of cohesive grains is measured and expressed in a simple manner
in §5. The consequences of this constitutive law for flows down rough inclined
planes are discussed in §6. We then come back to plane shear flows in §7, to
describe various microstructural quantities which evidence the development of space—
time heterogeneities as the cohesion is increased (this can be observed on movies
available with the online version of the paper). The link between the evolution of the
microstructure and the macroscopic behaviour is given in § 8. Conclusions are drawn
in §9.

2. Background

Granular flows are currently a very active research domain motivated by
fundamental issues (see for example Hutter & Rajagopal 1994; Rajchenbach 2000) as
well as practical needs such as the transport of minerals, cereals or powders (Rietema
1991), or in geophysical applications: rock falls, landslides (Campbell, Cleary &
Hopkins 1995), pyroclastic flows (Félix & Thomas 2004) and snow avalanches
(Bouchet et al. 2003; Rognon et al. 2007) involve large-scale flows of particulate
solids.

2.1. Dense flow of cohesionless grains

Up to now, most studies on granular flows have focused on cohesionless grains, and
both experimental and numerical approaches have provided a good understanding
of their behaviour in various geometries (see for example the review by GDR MiDi
2004). Among them, homogeneous plane shear and inclined plane highlighted some
unusual flow characteristics (figure 1).

Using discrete simulations, da Cruz et al. (2005) investigated the behaviour of
two dimensional quasi-rigid grains of mass m submitted to plane shear, prescribing
pressure P and shear rate y. Depending on the single inertial number I =y, /m/P,
they highlighted three flow regimes called quasi-static when grain inertia is negligible
(I < 1073), collisional when the medium is agitated and dilute (I 2 0.3), and, between
these two extremes, dense when grain inertia is important with a contact network
percolating through particles. They pointed out a simple expression for the constitutive
law in this dense flow regime: the apparent friction coefficient u*=1t/P linearly
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increases with the inertial number I :
W=ty + bI. (2.1)

Both parameters u,,;, and b depend on the properties of the grains. Also using discrete
simulations of plane shear flow, Campbell (2002) distinguished two kinds of dense
flow depending on the contact stiffness of the grains: an elastic—inertial regime for
rather soft grains and an inertial-non-collisional regime for rather rigid grains.
Several experimental and numerical studies focused on the flows of cohesionless
grains down inclined planes (see for example Pouliquen & Chevoir 2002; Pouliquen
& Forterre 2002). Flows stop if the slope 6 is lower than a critical slope (6 < 6yy,),
accelerate if the slope is higher than 6,.. and, in between these two limits, reach a
steady and uniform regime in which stress components vary along the flow depth y
hydrostatically: [P(y), t(y)] oc (H — y)[cos 8, sin0]. According to the constitutive law
(2.1) integrated in this stress field, the shear-rate profile follows a Bagnold scaling:

P(y) o (0 — Oyop)/H — y, (2.2)

with some deviation toward a constant shear-rate profile for a thin flowing layer
(Azanza 1998; Silbert et al. 2001; Prochnow 2002).

2.2. Effect of cohesive force on macroscopic behaviour

It is well known that cohesion strongly affects the mechanical properties of a granular
material in the solid regime (see for example, Nedderman 1992). At the other extreme,
the collisional regime of cohesive grains can be described well by extension of the
kinetic theory (Kim & Arastoopour 2002). By contrast, how cohesion affects the dense
flow behaviour previously described is much less well understood.

Static properties of a cohesive piling are extremely sensitive to its preparation, since
depending on the quantity of agitation during the assembling phase, the cohesive
sample is more or less heterogeneous. This loose structure is evidenced in plastic flows
or in the compaction of the sample (see for example, Gilabert, Roux & Castellanos
2007). The macroscopic shear strength t,,. of the granular packing is strongly
enhanced by cohesion (Richefeu, El Youssoufi & Radjai 2006; Taboada, Estrada &
Radjai 2006). This is usually described by the Coulomb criterion, ., =u.P + C
where . is the apparent friction coefficient of the assembly submitted to pressure
P, and C represents the macroscopic intensity of cohesion, which Rumpf (1958)
has related to the microstructure (solid fraction and coordination number) and the
strength of inter-granular cohesive force. Cohesion also strongly increases the angle
of avalanches, above which a static assembly of grains flows, and the angle of repose,
below which the flow stops. This has been shown through rotating-drum experiments
using wet glass beads (Fraysse, Thome & Petit 1999; Tegzes et al. 1999; Nase et al.
2001; Bocquet, Charlaix & Restagno 2002) as well as powders (Castellanos et al.
1999, 2001; Valverde, Castellanos & Ramos 2000), through heap flow experiments
(Mason et al. 1999; Samandani & Kudrolli 2001), and through crater experiments
and simulations using wet glass beads or powder (Hornbaker et al. 1997; Tegzes et al.
1999; Nase et al. 2001; Mattutis & Schinner 2001).

Castellanos et al. (1999, 2001) showed that dense flows cannot be achieved using
grains that are too small such as fine powders (d < 10~%m), since they are directly
fluidized by the interstitial fluid from a solid to a suspension of fragile clusters.
However, dense cohesive flows can be experimentally observed with large enough
grains such as wet glass beads (as in Nase et al. 2001; Tegzes, Viczek & Schiffer 2002,
2003), or with natural snow (Rognon et al. 2007). Rotating-drum experiments using
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n L/d H/d
Plane shear with walls 2000 50 40-60
Plane shear without walls 800 40 20-30
Inclined plane 1500 50 ~30

TaBLE 1. Size of simulated systems: length L, height A and number of grains n.

wet glass beads or powders highlighted the development of correlated motion which
leads to an irregular free surface and an increase of avalanche size (Samandani &
Kudrolli 2001; Tegzes et al. 2002, 2003; Alexander et al. 2006). Discrete simulations
also pointed out the aggregation of cohesive grains in various flow geometries (Ennis,
Tardos & Pfeffer 1991; Talu, Tardos & Ruud van Ommen 2001; Weber, Hoffman
& Hrenya 2004), which was evidenced by measuring the increasing fluctuation of
local solid fraction (Mei et al. 2000) or the increasing time of contact between
grains (Brewster et al. 2005). Using annular shear flows, Klausner (2000) measured
an increase of the apparent friction coefficient of powders from 0.2 for rather weak
cohesion, up to 0.8 for rather strong cohesion. This cohesion enhanced friction was
also observed in plane shear simulations by lordanoff, Fillot & Berthier (2005),
Aarons & Sundaresan (2006) and Alexander et al. (2006). Brewster et al. (2005)
simulated the flow of a thick layer of cohesive grains down an inclined plane, and
pointed out a breakdown of the Bagnold scaling for the shear-rate profile (2.2) owing
to the development of a plugged region at the surface of the flow, whose thickness
increases with cohesion.

Existing studies thus indicate that cohesion stongly affects the behaviour of dense
granular flow as well as its microstructure. However, the constitutive law of dense
cohesive flow has not yet been formulated, and the interplay between microstructure
and macroscopic behaviour is still an open question.

3. Simulated system

The review by GDR MiDi (2004) revealed a good agreement between two-
dimensional simulations and three-dimensional experiments of cohesionless granular
flows. Consequently, we choose to simulate two-dimensional systems which favour low
computational time without affecting the results qualitatively. The granular material
is an assembly of n disks of average diameter d and average mass m. A small
polydispersity (£20 %) is introduced to prevent crystallization.

3.1. Flow geometry

Two flow geometries are studied: the homogeneous plane shear (without gravity) and
the rough inclined plane. The length L and the height H of the simulated systems
are summarized in table 1. In both cases, periodic boundary conditions are applied
along the flow direction (x) and rough walls are made of contiguous grains sharing
the characteristics of the flowing grains: the same polydispersity and mechanical
properties (especially the same cohesion), but without rotation.

Plane shear flows are performed prescribing pressure and shear rate through two
kinds of boundary conditions along the transverse direction y. First, the material is
sheared between two parallel rough walls at a distance of H apart (figure la). One
wall is fixed while the other moves at the prescribed velocity V. The other method
was introduced by Lees & Edwards (1972) to avoid wall perturbations: it consists
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in applying periodic boundary conditions along y, as shown in figure 1(b). The top
and bottom cells move with a velocity +V (¢), which is adapted at each time step ¢ to
maintain a constant shear rate y = V(¢)/H(t). The control of the pressure is achieved
by allowing the dilatancy of the shear cell along y (H is not fixed), either through the
motion of the moving wall, or through a global dilation of the cell (in the absence
of walls). The evolution of H is: H=(Py — P)L/g, (Campbell 2005; Gilabert et al.
2007), where g, is a viscous damping parameter, and P, is the pressure exerted by the
grains on the moving wall, or the average pressure in the shear cell (in the absence of
walls). Steady state corresponds to (Py) = P, where () denotes an average over time.
Flows down a rough inclined plane are driven by gravity g (figure 1c). Grains
constitute a layer of thickness H flowing along a rough inclined wall (slope 6).

3.2. Contact law

Let us consider the contact between two grains i and j of diameter d; ;, mass m; ;,
centred at position r; ;, with velocity v; ; and rotation rate w; ;. We call the reduced
mass m; =m;m;/(m; + m;) and the reduced diameter d; =d;d;/(d; + d;)). Let n;
denote the normal unit vector, pointing from i to j (n; =r;/||r;|| with the notation
r; =r;—r;),and t; a unit tangential vector such that (n;, t;) is positively oriented.

The intergranular force F;; exerted by the grain i onto its neighbour j is split into
its normal and tangential components, F; = N;n; + T;t;;. The contact law relates Nj;
and Tj; to the corresponding components of relative displacements and/or velocities.
The relative velocity at the contact point is equal to V; =v; —v; +1/2(d;w; +d,w;)t;;.
Its normal component V;¥ =n; -V is the time derivative of the normal deflection
of the contact (or apparent overlap of undeformed disks): h; =(d; 4+ d;)/2 — ||r;]].
Its tangential component V| =t; - V;; is the time derivative of the tangential relative
displacement ;. The normal contact force is the sum of three contributions, an elastic
one N¢, a viscous one N?, and a cohesive one N“.

The linear (unilateral) elastic law is Nj=k,h; with a normal elastic stiffness
coefficient k, related to the Young’s modulus E of the grains: k, ~ Ed (Hertz 1881).
A normal viscous force is added to dissipate energy during collisions: N} = ¢ihy with
a damping coefficient ¢; related to the restitution coefficient e in a binary collision of

cohesionless grains: ¢; = \/m;k,(—21ne)// 7> + In’e.

The different models which represent the various physical origins of cohesive
interaction generally oppose the repulsive force with an attractive force N¢(h). The
shape of the total static normal force N(h)= N¢(h) + N%(h) involves at least three
parameters: a maximum attractive force N¢, an equilibrium deflection A¢ (for which
N(h¢)=0), and a range D of the attractive interaction (N¢(h) =0 for h < —D). Direct
adhesion between solid surfaces associated to van der Waals forces was characterized
well in Tabor (1981), Kendall (1993, 1994) and Gady, Schleef & Reifenberger (1996).
It can be fully described by the model of Maugis (1992) whose two limits give rise to
the simpler models plotted in figure 2(a). The DMT (Derjaguin, Muller & Toporov
1975) and the JKR (Johnson, Kendall & Roberts 1971) models, respectively, apply
for soft or hard grains whose contacts are slightly or strongly deformed by cohesion.
In the DMT model, the attractive force N%(h) is constant and its range D is null. In
the JKR model, the attractive force is proportional to the contact area, and a neck
forms when the grains recede for —D <h <0, thereby leading to a hysteresis. The
capillary cohesion was fully described experimentally in Pitois (1999) and Bocquet
et al. (2002), and theoretically in Elena et al. (1999) and Chateau, Moucheront &
Pitois (2002). It also presents a hysteresis which corresponds to the difference between
the formation and the breaking distance of a liquid meniscus (figure 2b). In both



26 P. G. Rognon, J.-N. Roux, M. Naaim and F. Chevoir

()

h/h®

FiGURE 2. Common cohesive interactions: (¢) DMT (—) and JKR (- - -) models, (b) capillary
force; simplified models used in numerical simulation: (¢) linear (—) and square (- - -),
(d) plasticity.
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FiGure 3. Cohesion model used in the present paper: normal force N/N¢ versus normal
deformation i/ h¢ (inset: apparent interpenetration).

cases, the roughness of the surface plays an important role in cohesive contact. The
asperities decrease the effective surface where the short-range van der Waals force
is significant (see Fuller & Tabor 1975; Thornton 1997; Tomas 2004), and, in the
case of humid grains they give rise to different scales of liquid menisci (Bocquet
et al. 2002). Moreover their plastic deformation leads to the ageing process for the
contact (Ovarlez & Clément 2003). In their simulations, Gilabert et al. (2007), Kadau
et al. (2002) and Weber et al. (2004) approximated these models of cohesion by the
simple functions plotted in figure 2(c), and Luding, Tykhoniuk & Thomas (2003) and
Richefeu et al. (2005) used a more complex function which takes into account the
contact plasticity (figure 2d).

We choose a simple cohesive force which captures the main feature of the previous
cohesion models: the maximum attractive force N¢. We consider the limit of D=0
and we do not take into account any hysteretic behaviour or contact plasticity. As
previously proposed by Mattutis & Schinner (2001) and Radjai, Preechawuttipong &
Peyroux (2001), we choose the smooth function:

N&(hy) = —~/4k, N°hy. (3.1)

In the static limit (N;; =0), this model leads to a maximum attractive force N and
to an equilibrium deflection h¢ =4N°¢/k, (see figure 3). Richefeu et al. (2005) showed
that the shape of N“(h) does not have an influence provided it leads to the same N°¢.
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Polydispersity % e ki /ky
+20% 0.4 0.1 0.5

TaBLE 2. Fixed material parameters.

In Rognon et al. (2006), we compared the previous function N“(h) with the DMT
model N4(h)=—N¢ and checked that they give rise to similar flow properties.

As usual (Radjai et al. 2001; Richefeu et al. 2005; Wolf et al. 2005; Gilabert et al.
2007), friction between grains is described by a Coulomb condition enforced with the
sole elastic part of the normal force:

Tyl < 1, (3:2)

where u is the coefficient of friction between grains. The tangential component of the
contact force is related to the elastic part §;; of the relative tangential displacement

8+ Ty = k.S, with a tangential stiffness coefficient k,. 85 satisfies:
[0 if |Ty|=pN; and T; V] >0, (3.3a)
v V[ otherwise, (3.3b)

and vanishes when the contact opens. The contact is termed sliding in (3.3a) (the
condition that 7;; and V,jT share the same sign ensuring a positive dissipation due
to friction) and sticking in (3.3b). Rolling friction could also be considered (Gilabert
et al. 2007). However, this mechanism is significant for very small particles, < 1 pm
(Jones et al. 2004). For much larger particles (~ 100 pm), this mechanism should not
be relevant. In fact, an analysis of the influence of rolling friction, keeping sliding
friction, was performed in Gilabert et al. (2007) in the case of the isotropic compaction
of an assembly of cohesive grains, and it was found that the inclusion of small rolling
friction has only a small effect.

Table 2 summarizes the material parameters which are fixed in all our calculations.
The friction coefficient between grains is fairly realistic (u = 0.4), except in § 8.2 where
the case of frictionless grains (u=0) is discussed. ¢e=0.1 corresponds to a rather
strongly dissipative material, which favours dense flows. da Cruz et al. (2005) showed
that the values of © and e do not significantly affect the characteristics of cohesionless
granular flows, except for the extreme case w =0. Johnson (1985) showed that k, is
of the same order of magnitude as k,, and Silbert et al. (2001) and Campbell (2002)
pointed out that it has a very small influence on the results for cohesionless grains. k,
is then fixed to k,/2 in all our calculations. The values of the stiffness coefficient k,
and of the maximum attractive force N¢ will be discussed in §4.

3.3. Simulation method

Numerical simulations are carried out with the molecular dynamics method, as in
Cundall & Strack (1979), Silbert et al. (2001), Roux & Chevoir (2005) and da Cruz
et al. (2005). The equations of motion are discretized using a standard procedure
(Gear’s order-three predictor—corrector algorithm, Allen & Tildesley 1987). The time
step is chosen equal to 7./50 where t. is the collision time for a pair of cohesionless

equal-sized grains: 7, = \/m(Tt2 + In? e)/(4k,).
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4. Dimensional analysis

The grains and the flow geometries are described by a list of independent
parameters. It is convenient to use dimensional analysis to extract dimensionless
numbers which express the relative importance of different physical phenomena and
enable quantitative comparison with real materials.

Grains are described by their diameter d, mass m, coefficient of restitution ¢ and
coeflicient of friction pu, elastic stiffness parameters &, and k; and maximum attractive
force N¢. The terms d and m, respectively, constitute the length and mass scales. Since
the dimensionless number u, e and k;/k, are fixed, there remain two dimensional
parameters that describe grains: k, and N¢. The flow geometries are described either
by the gravity g, the slope 6 and the thickness H of the flowing layer for the inclined
plane, or by the prescribed pressure P, the prescribed shear rate y, and the viscous
damping parameter g, for plane shear. The dimensionless number g,/ /mk, =1 is
chosen, which ensures that the time scale of the fluctuations of H is imposed by the
material rather than the wall, and the wall sticks to the material. Consequently, the
shear state is described by pressure P and shear rate y. Among the various possible
choices (see Campbell 2002; da Cruz et al. 2005), we use the following dimensionless
numbers.

4.1. Inertial number [

Da Cruz et al. (2005) and GDR MiDi (2004) showed that the shear state of
cohesionless rigid grains is controlled by the single inertial number /, combination of
the shear rate y and of the pressure P, whose expression is (for a two-dimensional
system):
m
I=yp,/—. 4.1

"\ p (4.1)
I compares the inertial time ./m/P with the shear time 1/y and is called inertial
number. Small values (I < 1072) correspond to the quasi-static regime where the grain
inertia is not relevant. Inversely, large values (1 2 0.3) correspond to the collisional
regime where grains interact through binary collisions.

4.2. Cohesion numbers Bo, and n

Different dimensionless numbers are used to quantify the intensity of cohesion. They
compare the maximum attractive force N¢ to a typical force scale in the system. In
the presence of gravity, Nase et al. (2001) introduced the granular Bond number :

_NE
=

Bo, (4.2)
which compares N¢ with the weight of a grain. For plane shear flows without gravity,
we define (as in Wolf et al. 2005; Gilabert et al. 2007) another dimensionless number 7:

(4.3)

which compares N¢ with the average normal force Pd due to the pressure. According
to this definition, the transition between a regime of low cohesion and a regime of
high cohesion should depend on n and should occur for n of order unity. Let us now
estimate of the parameter n in realistic three-dimensional situations, n = N¢/(Pd>).
N°¢ can be estimated by my;d in the case of humid grains (where y; is the surface
tension of the liquid, of the order of 0.05N m™!) and by Ad/(24z3) in the case of van
der Waals adhesion (where A is the Hamaker constant, of the order of 107" N'm and
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Plane shear Inclined plane

I n hy H/d 0 Bo, hy
1072 -0.3 0—385 10-3 ~30 14° — 39° 0— 200 107°

TaBLE 3. Ranges of dimensionless numbers explored.

zo a molecular distance, of the order of 2A). In the presence of gravity, the pressure
P is given by p,vgH, at the bottom of a layer of height H = Nd, with a solid fraction
v~ 0.6. Considering glass beads for which p ~2500 kg m—3, we obtain n ~ 107> /(Nd?)
for capillary cohesion and n~7 107%/(Nd?) for van der Waals adhesion (where d is
expressed in m). This means that a value of n~ 100 at the bottom of a layer of 10
grains is relevant if d =10"*m for capillary cohesion or if d =10"m for van der
Waals adhesion. However, this estimation does not take into account the screening
of cohesion by the roughness of the grains.

4.3. Stiffness number h*

The third dimensionless number measures the average relative deformation of the
contacts in the system: h* =h/d. Without cohesion, this deformation is merely due
to the pressure and limited by the stiffness: 4y = P/k,. Cohesive force enhances this
deformation:

h™(n) = ho A (n), (4.4)

with #(n)=1+ 2n + 2+/n + n2. For strong cohesion, 2" measures the deformation
of grains due to the sole cohesive force (without pressure): N¢/(k,d) and ranges from
1073 for powders (Israelachvili 1992; Aarons & Sundaresan 2006) down to ~ 1072
for wet glass beads.

4.4. Range of dimensionless numbers explored

Plane shear flows are performed prescribing six values of 7 between 102 and 0.3 and
36 values of n from cohesionless grains, n =0, up to n =385 (table 3). It was shown
that the properties of cohesionless granular packings as well as flow characteristics do
not depend on the value of A once it is small enough (hy < 107*) (Roux & Combe
2002; da Cruz et al. 2005). We choose hy=107> so that the systems are in this rigid
limit at least for low cohesion: h*(n) < 10~* for n < 2.5. For larger values of n, there
might be an influence of the deformation of the grains, which is specifically discussed
in Campbell (2002) and Aarons & Sundaresan (2006). However, lowering the value
of hy below 107° would strongly increase computational time.

Flows down inclines are performed with slopes varying between 15° and 39°, and
with a thickness H =30d, in order to obtain steady and uniform regimes. Six value
of Bo, are set starting from cohesionless grains, Bo, =0, up to Bo,=200. This
corresponds to the range of Bo, which was experimentally reached by Nase et al.
(2001) varying the size of glass beads (0.5 <d <10mm, p~2500kgm~) and the
surface tension of the liquid (40 <y, <72mNm™).

5. Measurement of the macroscopic constitutive law

Using homogeneous plane shear flows, we present in this section the measurement
of the effect of cohesive force on the macroscopic behaviour of grains. Such a method
was successfully used to measure the rheological behaviour of cohesionless grains (see



30 P. G. Rognon, J.-N. Roux, M. Naaim and F. Chevoir

1.0
084
¥ 0.6
H 0.4
0.2

~~~~~ @] Jol ©f b

02 04 0 04 08 120 04 08 0 04 08
4 P S v

FiGure 4. Homogeneous shear state (P =1, y =0.1, N°=0): (a) shear rate y(y), (b) pressure
P(y), (c) shear stress S(y) and (d) solid fraction v(y); transverse boundary conditions with
walls (...) and without wall (—).

for example Campbell 2002; da Cruz et al. 2005), and to explore the effect of grain
stiffness on cohesive flows (Aarons & Sundaresan 2006).

5.1. Steady homogeneous shear state

The preparation which has been used most of the time consists in starting from a
configuration where the disks are randomly deposited without contact and without
velocity. The average solid fraction is around 0.5. Then the prescribed shear rate and
the prescribed pressure are applied. After a sufficient amount of time, the flowing layer
reaches a steady shear state characterized by constant time-averaged kinetic energy,
stress tensor and solid fraction. This contrasts with the static case (Gilabert et al.
2007), where if P is slowly decreased, a hysteresis is observed, with a microstructure
which strongly depends on the maximum value of P applied to the packing in the past.
These steady flows do not depend on the initial solid fraction or on the initial velocity
profile (plug or linear). A great advantage of the bi-periodic boundary conditions is
that the convergence toward a steady state is around ten times faster than with walls.

When a continuous steady state is reached, the simulation is carried out during a
sufficient amount of time Az, so that the relative displacement of two neighbouring
layers is larger than around ten grains (y At = 10). In this steady state, we consider
that the statistical distribution of the quantities of interest (structure, velocities,
forces. .. ) are independent of time and uniform along the flow direction, so that we
proceed to an average in space along the flow direction and in time by 100 time
steps distributed over the period Ar. Using averaging methods described in Litzel,
Luding & Hermann (2000) and Prochnow (2002), figure 4 plots the profiles of solid
fraction v(y), shear rate p(y), pressure P(y) and shear stress S(y). The stress tensor is
dominated by the term associated with contact forces between grains (da Cruz et al.
2005):

1

For every steady and homogeneous shear flows, we observe that ¥\, ~ ¥, implying
that stress tensors share common principal directions. Consequently, the pressure P
given by (X, + X,,)/2~ X,,.

Figure 4 also compare the profiles for the two kinds of boundary condition, with
and without walls. Except in the five first layers near the walls, where the granular
material is organized, the two kinds of boundary condition give rise to consistent
shear states. Even when starting from a localized velocity profile near one of the
walls, we systematically observed a relaxation toward a homogeneous shear state.
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n

FIGURE 5. Homogeneous plane shear flows: picture from simulations for different values of
inertial number I and cohesion intensity 1. Movies of the flows are available with the online
version of the paper.

The conclusion is that the granular material is completely sheared and that the shear
is homogeneous. This allows us to define average (along time and space) solid fraction
v, shear rate y, pressure P and shear stress S. The following measurements are made
in the whole system using simulations without walls.

In the range of I and n explored (see table 3), the flows are homogeneous as was
previously described. Figure 5 shows some such flows. For strong enough cohesion (5
larger than around 100), the shear state becomes heterogeneous. Between two walls,
the flow is made up of a single rigid block which sticks alternately to one of the two
walls (Forsyth, Hutton & Rhodes 2002; lordanoff et al. 2005). In the absence of walls,
the shear is localized in a few layers between two rigid assemblies. These localized
shear flows would require specific studies. They are not discussed in this paper.

5.2. Constitutive law

The homogeneous shear states give direct access to the rheological law of the granular
materials through the measurement of two fundamental dimensionless quantities, the
solid fraction v and the apparent friction coefficient " =S/P, which adjust in
response to the two prescribed dimensionless numbers: the inertial number (0.01 <
I < 0.3) and the cohesion number (0 < n < 85). For cohesionless grains, the influence
of I on v and u" was measured by da Cruz et al. (2005). We will show the strong
influence of the cohesion number 1 on those two quantities.

Friction law is the variations of the effective friction coefficient ©* as a function of 7
and 7 (figure 6a). The first general observation is that cohesion strongly increases p*,
up to large values (u* ~2). Da Cruz et al. (2005) showed that the apparent friction
coefficient of cohesionless granular materials increases approximately linearly with 7,
starting from a minimum value pu,,;,: w(I) ~u,,, + bl, with a possible saturation for
large I. We observe that this law may be extended to cohesive grains:

Figure 6(b) plots both functions w;,,(n) and b(n), which have the same shape. Below
a cohesion threshold (n < 10) the cohesion does not affect w,, or b. Above this
threshold, u,..(n) and b(n) strongly increase.
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Dilatancy law is the variations of the solid fraction v as a function of I and 7
(figure 6¢). The first general observation is the strong expansion of the material owing
to cohesion. Da Cruz et al. (2005) showed that the solid fraction of cohesionless
granular materials decreases approximately linearly as a function of I, starting from
a maximum value v, : v(I) ~ v —al. We observe that this law may be extended
to cohesive grains:

v(I, 1) = Vpax(n) — a(n)l. (5.3)
Figure 6(d) plots both functions v,..(n) and a(n) which have the same shape. They
strongly decrease for weak cohesion n < 2, then still decrease, but more slowly. On
the one hand, the decrease of v,,..(n) means that cohesion tends to dilate the flows,
especially for low 7. On the other hand, the decrease of a(n), down to zero for the
highest cohesion, means that the solid fraction no longer depends on the inertial
number / for strong cohesion.

Starting from both variations of solid fraction and apparent friction as functions
of I and n, we show (figure 7) the variation of the apparent friction as a function
of solid fraction instead of I and n. We observe an approximate collapse of the data
on a master curve made of complementary zones of high solid fraction (low n) and
smaller solid fraction (higher n). The apparent friction strongly decreases when the
solid fraction increases. This tendency of the data, which was previously observed for
cohesionless grains by Craig, Buckholz & Domoto (1986) and da Cruz et al. (2005),
appears as a robust feature which shows the importance of the solid fraction in
granular flows and may be of help in rheological models (see for example Josserand,
Lagree & Lhuillier 2004).

The constitutive law is usually written as the dependencies of the pressure and shear
stress on the shear rate and solid fraction. With cohesion, we should also include
the dependency on the cohesion intensity n. From the definition of 7 (4.1) and the
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friction law (5.2), this leads to the following expression of the shear stress S:

S= ()P + b(n)mPy, (5.4)

which corresponds to a viscoplastic constitutive law, with a Coulomb friction term and
a viscous term. The apparent viscosity b(n)/mP depends on the cohesion intensity
through the parameter b(n) (figure 6b). We shall then define a low cohesion regime
(n < 10) where the cohesion does not affect the apparent viscosity and a high cohesion
regime (n = 10) where the apparent viscosity is strongly enhanced by cohesion.

5.3. Quasi-static limit

In the quasi-static limit (I — 0), the extrapolation of the constitutive law (5.4) predicts
that S=pu, . (n)P. Figure 6(b) shows that p, . (n) is roughly linear, ., + an with
a~0.012, so that constitutive law can be expressed as:

S=ppP +aN°/d. (5.5)

This is reminiscent of the Coulomb criterion described in §2.2. u,,, then identifies
to the apparent friction coefficient u. and «N¢/d to the macroscopic intensity of
cohesion C. Assuming that all the contacts break at the shear threshold, Rumpf
(1958) related C to the microstructure (solid fraction v and coordination number Z)
and the strength of inter-granular cohesive force N¢ through the following formula
(written in two dimensions): C = ZvN°€u./nd. Considering the following values (Z = 3,
v~0.8, u.~u,., ~0.3) provides C ~0.2N/d. The form is similar, but the factor «
estimated from quasi-static flows is much smaller (by a factor around 20) than the
value predicted by the Rumpf formula. We shall try to interpret this difference in
§8.4, after having analysed the microstructure of the flow.

6. Cohesive flows down an inclined plane

It is clear that the homogeneous plane shear cannot be achieved in real situations
because of gravity g. Nevertheless, it provided a good understanding of the macros-
copic behaviour which can now be used to discuss flows down inclined planes. This
geometry is closer to practical needs, but more complex since stresses are no longer
homogeneous along the depth. This section presents the behaviour of cohesive grains
flowing down a rough inclined plane, focusing on a steady and uniform regime. The
dimensionless number that measures the cohesion intensity is the granular Bond
number Bo,, defined in §4.
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profiles of measured stresses P and t (—) with hydrostatic stresses P and —t” (surface). For
clarity, pressures are plotted along the negative values and shear stresses along the positive
values.

6.1. Steady and uniform flow regimes

An important feature of cohesionless granular flows down inclines is that they reach a
steady and uniform regime in a large range of slope (Pouliquen 1999). In this regime,
friction exactly compensates the gravity driving force. In presence of cohesion, this
regime also exists, as detailed in this section.

The preparation which was used most of the time consists in starting from an initial
configuration where the disks are randomly deposited without contact and without
velocity. The average solid fraction is around 0.5. Then gravity is applied so that the
plane is inclined with a slope 6. After a sufficient time, the flowing layer may reach
a steady shear state characterized by constant time-averaged kinetic energy, stress
tensor and solid fraction. A second method consists in starting from a steady uniform
regime at given slope and cohesion, then changing either slope or cohesion. The final
flow does not depend on the initial state.

Figures 8 plots the profiles of solid fraction, stresses and velocity along the depth
for flows of similar thickness (H =~ 30d), same slope (6 =25°), but with different
cohesion Bo,. Without cohesion (Bo,=0), as previously shown by Silbert et al.
(2001) and Prochnow (2002), the solid fraction v(y) is constant along the depth
except for a thin layer (a few grains) near the rough wall where oscillations reveal
the organization of grains in layers. As cohesion increases, v(y) remains constant
in the bulk and oscillates near the wall, but its mean value decreases. Figure 8(b)
compares the stresses measured within the flow using (5.1) with the hydrostatic
stresses under gravity: [P"(y), T"(y)] = p,8 f,Lo v(y1)dy;[cos@, —sinf] and reveals a
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good agreement (p, is the mass density of the grains). Shear stress T compensates the
gravity stress t”, which reveal that the flow is in a uniform regime. Neglecting the
small fluctuations of the solid fraction around its mean value v, stresses follow:

P(y)\ _ cosf
(200) =onsvtzt = (Sm)- 1)
Consequently, the apparent friction coefficient ©* =1(y)/P(y) is constant along the
depth and directly prescribed by the slope: u"= tan6. Furthermore, since the

pressure increases along the depth, the cohesion number 5 varies according to
n(y) = Bogd/(vcosO(H — y)) so that the cohesion increases close to the free surface.

6.2. Constitutive law deduced from flows down inclines

Steady and uniform flows down inclines consist in applying through the slope 6 an
apparent friction coefficient ©* = tan to the material. The local constitutive law of
the granular material can be deduced from the measurements of the inertial number
profiles at various slope. The following method is used to explore different slopes:
for various cohesive intensity Bo,, steady and uniform flows are initially performed
at a given slope; then, the slope is decreased (or increased) at a low enough rate so
that flows can be considered as steady and uniform at each time step, until the flows
stop (or accelerate). Figure 9 plots the profiles of solid fraction, velocity and inertial
number / for various slopes and cohesion intensities Bo,. According to the relation
w"(v) (§5.2), the solid fraction is set by the slope and is constant along the depth
(except near the free surface and near the rough base). Without cohesion, as shown by
Silbert et al. (2001), the velocity profile satisfies the Bagnold scaling, since the inertial
number is approximately constant along the depth, except in the first few bottom
layers where I increases (probably because of the organization of the grains in layers
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near the wall, leading to a sliding velocity), and the first few free-surface layers where
I diverges owing to the low pressure. With cohesive force, the shear rate drops to
zero in a solid layer near the free surface. The thickness of this layer increases as Bo,
increases. This breakdown of the Bagnold scaling, observed by Brewster et al. (2005),
is evidenced by the variation of the inertial number which is no longer constant along
the depth, and drops to zero in the solid surface layer. Since each layer into the flows
is submitted to a shear with a prescribed u* = tan 6, but a varying cohesion intensity
n(y), the constitutive law can be deduced by measuring the inertial number profile
I(y) and extracting w*(I(y), n(y)). Figure 10 plots u*(n) for various I, and compares
the results obtained using an inclined plane with the constitutive law measured using
plane shear flows. Results are in good agreement, although data from the inclined
plane are scattered. This is not surprising since they are not averaged over time, nor
over the transverse direction. The great difference between these two approaches is
that the shear rate is prescribed in plane shear whereas the shear stress is prescribed
in flows down an inclined plane. As a consequence, large value of I combined with
strong cohesion, which can be explored using plane shear, cannot be reached within
flow down an inclined plane since the most cohesive part of the flow is plugged. Since
the apparent viscosity of cohesive grains is strongly enhanced by cohesion above
n = 10, but is not affected for lower values, the thickness of the plugged layer is of
the order of Bo,/10 grains.

7. Microstructure

The two previous sections have shown the strong effect of cohesion on the macros-
copic rheological law. We now turn to the evolution of the microstructure of the
flow. As shown in figure 5, when the intensity of cohesion increases, large voids
appear, separating dense areas. This was also observed in Mei et al. (2000) and Weber
et al. (2004). Experimentally, Tegzes et al. (2002, 2003) observed correlated motions
of grains in dense flows of humid grains. There is a large amount of published
work on the formation of aggregates in agitated dilute systems, such as fluidized
powders (Castellanos et al. 2001) or coagulation of dusts in astrophysical situation
(Dominik & Tielens 1997). In the present section, we measure various microstructural
indicators showing the development of space—time heterogeneities within the granular
flow submitted to homogeneous plane shear.
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7.1. Coordination number Z

The first quantitative indicator is the average number of contacts per grain, the
coordination number Z. The variations of Z as a function of I and n are shown in
figure 11. In the low-cohesion regime (n < 10), Z increases strongly when I decreases
and tends to a maximum value when 7 — 0. This is consistent with the dilatancy
of the granular material when going from the quasi-static regime to the collisional
regime. This behaviour is similar to that observed with cohesionless grains (da Cruz
et al. 2005). For higher cohesion, the dependency of Z on I becomes smaller, and Z
is around 2.5 even for the highest value of I. This indicates that cohesion tends to
increase the value of I for the transition between dense and collisional regimes.

As cohesion increases, the coordination number first strongly increases while n < 5,
then increases more slowly to reach a maximum value. The increase of Z(n) whereas
the solid fraction v(n) decreases is unexpected, and reveals that cohesive grains
agglomerate in dense areas where the coordination number is high, while, on the
whole, the granular material is becoming more porous, which decreases the average
solid fraction.

7.2. Distribution of local solid fraction, length scale £¥

As a way to characterize quantitatively the increasing heterogeneity of density induced
by cohesion, we measured the distribution of the local solid fraction (Richard et al.
2003; da Cruz et al. 2005). At each time step, we performed a radical tessellation.
The local solid fraction around each grain is defined as the ratio of the areas of the
grain and of its Voronoi cell (the points which are closer from this grain than from
any other grain). This defines the field of the local solid fraction v(r). Figure 12(a)
shows the distribution of the local solid fraction for a given I and for various . The
small polydispersity allows high values of solid fraction (v(r)— 0.9). With cohesion,
dense areas still exist, whereas the local solid fraction of the grains close to the voids
decreases (v(r) — 0.2). The standard deviation Av of the distribution may be used to
characterize the heterogeneity of density. Figure 12(b) shows that cohesion enhances
Av.
The auto-correlation F(R) of the fluctuating solid fraction field §v(r):

(8v(r)dv(r + R))
Sv2 ’
gives access to a characteristic length scale of the heterogeneities, associating dense

areas and voids. We observe that F is isotropic, and apart from a small peak around
R =d, decreases approximately exponentially with R (figure 12¢). In order to quantify

F(R)=

(7.1)
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FIGURE 12. Heterogeneity of the microstructure. (a, b) Distribution of local solid fraction and
its standard deviation Av(n) . (c, d) Correlation of the local solid fraction F(R) and associated
length scale £"/d. (e, f) Distribution of pore size G(S) and associated length scale £7/d. (g, h)
Persistence of contacts P(e€) and typical strain of persistence €”(n). (a,c,e,g) 1 =0.2, n=0
(O), 10 (0), 30 (1), 80 (V). (b, d, f,h) 1 =0.01 (O), 0.025 (O), 0.05 (A), 0.1 (V), 0.2 (©), 0.3 ().

this effect, we define the correlation length ¢¥ as the distance where the correlation
is equal to 0.4 (other values give similar qualitative results). Figure 12(d) shows that
cohesion enhances ¢".

7.3. Distribution of porosity, length scale €7
Another indicator of the organization of the granular material is given by the
distribution of pore sizes. The first step is a discretization of the picture of the granular

flow at each time step, with a pixel size of d/20. This allows us to distinguish the
pixels lying on voids from those lying on grains. Then, using an invasion algorithm,
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it is possible to make a list of the connected voids, and to measure their area S.
Figure 12(e) shows the proportion of void space G(S) belonging to a pore of area
larger than S. G(S) decreases approximately exponentially with S: G(S) ~exp(—S/S?).
Then €7 = \/SP characterizes the length scale of the pores, but does not account for
their anisotropy (the pores may be elongated). Figure 12(f) shows that cohesion
strongly enhances ¢7. This length also increases with the inertial number, which is
not surprising because increasing I decreases the solid fraction (dilatancy law), ie
increases the void fraction, and so the connecting void probability.

7.4. Persistence of contacts, strain scale €?

£¥ and ¢? provide information on the spatial organization of the granular material. We
now present another quantity associated to the time correlation of the contact network.
Starting from a population of contacts at time ¢, we define the function P(T) as the
proportion of contacts which have not been broken at the time 7+ 7 (an average over
time ¢ is performed). We notice that a similar quantity, called topological correlation
function was defined in Choi et al. (2004), to measure the diffusion in granular flows.
This function obviously starts from the value 1. Figure 12(g) shows that it decreases
exponentially to zero with time T or the associated strain e =pT: P(¢) &~ exp(—e/€?).
€” is the characteristic strain scale of persistent contacts. Figure 12(h) shows that €”
is lower than 1 for cohesionless grains, and that cohesion increases it above 1. This
means that the persistent time of the contacts becomes larger than the shear time.

7.5. Velocity correlations, length scale £°

Correlated motions of grains and transient rigid clusters were evidenced with
cohesionless grains (Bonamy et al. 2002; GDR MiDi 2004; Pouliquen 2004), and
found to affect the rheological properties of the granular flows (Ertas & Halsey
2002; Mills, Rognon & Chevoir 2005). Pouliquen (2004) measured the fluctuating
velocity field v(r) at the surface of a flow down an inclined plane and showed
that its correlation length ¢ strongly increases as the inclination decreases near
jamming. This observation suggests that the jamming mechanism is connected to
the development of space-time correlations within the flow when going from the
collisional regime to the quasi-static regime. It is then tempting to measure this
correlation length ¢” within a homogeneous shear flow, as a function of the two
dimensionless numbers I and 7.

We start by measuring the auto-correlation function C(R) of the fluctuating velocity
field sv(r):

ZSU,-Sng(r,-j — R)

C(R) =" ST (7.2)

where dv; =|8v;|, and g is a Gaussian function of width w =0.4d. We checked that
the results do not depend significantly on w, and are qualitatively the same when
considering only one component of v. We observe that C(R) is isotropic and decreases
exponentially with R: C(R) oc exp(—R/£"), which defines the correlation length £V.
Figure 13(a) shows £ as a function of I for cohesionless grains. Consistently with
the measurements down an inclined plane performed by Pouliquen (2004), £¥ strongly
increases when the inertial number I decreases, that is to say when going from the
dense regime to the quasi-static regime. Figure 13(b) shows £’ as a function of 5
for three values of I. For I 20.1, £¥ is small for cohesionless grains and increases
as a function of n. Conversely, for small 7, there are already correlated motions for
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cohesionless grains, then as n increases, there is first an expansion of the material
which decreases ¢ before an increase for larger 7.

8. Links between the microstructure and the macroscopic behaviour

In §5, we have shown the strong effect of the cohesion number n on two macroscopic
quantities, the apparent friction u* and the solid fraction v. Then, in §7, we have
measured the dependencies of several indicators of the microstructure of the granular
flow (Z,¢",£7,¢%,€?) as a function of 5. Their increase is a clear signature of
the development of space—time heterogeneities induced by cohesion. In this section,
we focus on the relation between the evolution of the microstructure and of the
macroscopic behaviour.

8.1. Distribution of normal forces

The cohesion seems to increase the apparent viscosity for n larger than around 10 (see
§5.2). This is surprising since estimating by Pd the normal traction force necessary to
separate two cohesive grains would predict a high cohesion regime for n ~ 1. However,
this assumption is rather crude since, as in cohesionless granular pilings (Radjai et al.
1996) or granular flows (O’Hern et al. 2001), we observe a large distribution of
normal forces N = N¢ + N“. Figure 14(a) plots the distribution of N/N¢. In cohesive
granular systems, N/N¢ may be negative but is always larger than —1. For n < 1,
the force scale Pd is larger than N¢: the distribution is broad, so that contacts may
be broken easily. For much larger n, the force scale is given by N¢: the distribution
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is much more peaked, so that most contacts cannot be broken. Figure 14(b) shows
that the standard deviation of the distribution decreases slightly when I increases but
decreases significantly when 7 increases. It becomes smaller than unity for n between
3 and 10. This suggests that the high cohesion regime transition might be controlled
by the distribution of normal forces rather than by their average value.

8.2. Increase of apparent friction

Friction between grains is described by a Coulomb condition enforced with the sole
elastic part of the normal force: |T/N¢| < u (see §3.2). When compared with the
total normal force N = N°¢ + N¢, it is easy to show that |T/N| < u A (|N¢/N|), where
the function # was defined in §4.3. For N > N¢, which happens for small cohesion,
A ~1. Then the apparent friction coefficient between grains remains u. However,
for N < N¢ which is frequent for large cohesion, # ~4|N¢/N| which means that the
apparent friction coefficient between grains is strongly increased. For cohesionless
grains, it was shown that an increase of w significantly decreases v,,, (da Cruz et al.
2005). Consequently, we predict that this increase of the apparent friction between
grains induced by cohesion should result in an expansion of the granular flow. In
order to evidence this effect, we have compared the evolution of the solid fraction
for frictional (1 =0.4) and frictionless grains (u =0) in figure 15(a). Contrarily to
frictionless grains, the expansion of frictional grains starts for small n (n < 2).
Consistently, this increase of apparent friction between grains strongly reduces the
proportion of sliding contacts in the same range of n, as shown in figure 15(b). This
suggests that conversion of sliding into sticking contacts might be responsible for this
dilation (Rivier 2005).

8.3. Anisotropy

We now return to the friction law and analyse the strong increase of the apparent
friction w*(n) above the agglomeration transition. It has been shown by Campbell &
Brennen (1985) and da Cruz et al. (2005) that ©* may be written as the sum of two
contributions, associated to the angular distribution of normal and tangential forces:

w=— / tn (@) sin(2¢) do + / ¢r(¢) cos(2¢) dg. (8.1)
0 0

¢ is the direction of a contact counted counterclockwise from the flow direction,
between 0 and 7. ¢y and ¢r are the products of the distribution of contact orientations
by the intensities of normal and tangential forces, respectively, normalized by the
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average normal force in the system (figure 16). As expected, figure 17(a) shows
that the calculation of the apparent friction using (8.1) is in excellent agreement
with the direct calculation. Figure 17(a) highlights that both normal and tangential
anisotropies significantly increase as a function of 5, as was previously shown in
quasi-static evolutions by Radjai et al. (2001). The increase of the amplitude of ¢y
occurs for n =10, so that it seems related to the agglomeration transition: Cy(¢)
increases in the direction of force chain compression (¢ ~120), but decreases and
may even become negative in the direction of force chain traction (¢ ~30). This
evolution, strongly enhanced by the factor sin 2¢, leads to an increase of the normal
contribution to the apparent friction py. On the other hand, the enhancement of
the amplitude ¢7(¢) starts for small n, so that it seems connected to the increase
of apparent friction induced by cohesion. Also, this evolution, strongly enhanced by
the factor cos2¢, leads to an increase of the tangential contribution to the apparent
friction wy. Figure 17(b) shows that the relative contribution of normal forces to the
apparent friction uy/u* decreases with cohesion (going from around 90% for n=0
to around 70% for n = 10).

8.4. Basic mechanisms

We now summarize as simply as possible the previous quantitative analysis. The
shear of dense cohesionless grains requires that each individual grain moves over
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FiGURE 18. Basic mechanisms involved in cohesive granular flows: (a) without aggregates
and (b) taking into account the agglomeration of grains.

the neighbouring grain in front of it (figure 18a). The macroscopic resistance to the
shear is then merely due to the repulsive forces acting throughout the ascension. With
cohesion, a second contribution enhances the macroscopic resistance to the shear:
after the ascension, the cohesive contact must be broken. Naively, this reasoning
predicts that the part of the shear stress due to cohesion should increase as the
maximum attractive force is increased, and consequently that the part of the friction
coefficient due to cohesion should increase as n increases. Our measurements show
that when the cohesion intensity 5 increases from 0 to 85, u* increases from 0.25 to 3.
However, the agglomeration of cohesive grains must also be taken into account. Then
the previous mechanism where a grain moves over the neighbouring grain in front
of it must be considered at the scale of the large clusters, rather than at the scale of
individual grains (figure 18b). This leads to a strong expansion of the granular media
since two scales of porosity appears: between and inside the clusters. Moreover, after
the ascending phase, the separation of two clusters merely requires the contacts of
the grains to be broken at the interface of the clusters, while the contacts inside the
clusters are not broken. Consequently, the organization in clusters strongly favours
the flow of cohesive grains.

The interpretation of the difference between our interpolation of the friction law
in the quasi-static regime and the Coulomb criterion using the Rumpf formula is
now clear: since the flowing granular materials is made of aggregates with enduring
contacts, the contacts do not all break simultaneously when the material is flowing,
but only those which are at the periphery of the aggregates. This may reduce the
number of breaking contacts significantly. At the other limit, the aggregation of
grains owing to cohesion may affect the transition between dense and collisional flow
regimes. Cohesion favours multiple enduring contacts within aggregates, and whether
there exists a regime with binary collision at high 7 is an open question which requires
a specific study.

9. Conclusion

The existence of intergranular cohesive forces is found to affect dense granular flows
strongly. The simulations of simple systems with a generic cohesion model enable us
to identify the rheological behaviour of cohesive grains, and to provide a complete
scheme on its origin at the scale of the grains and of their organization.

The simulation of a simple flow geometry, the homogeneous plane shear, and the
use of dimensional analysis appear to be efficient in describing the behaviour of
cohesive granular flows. We point out that their constitutive law can be expressed by
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a simple friction law, similar to the case of cohesionless grains, but that the cohesion
strongly enhances the resistance to the shear. The consequence on cohesive granular
flow down a slope is that a plugged region develops at the free surface where the
cohesion intensity is the strongest. Then, flows are made of a fluid bottom layer and
a solid-like top layer, the thickness of which increases with the intergranular cohesive
force.

Moreover, we reveal the strong interplay between the local contact law (friction and
cohesion), the properties of the contact network (force distributions and anisotropy)
and the rheological law (dilatancy and apparent friction). For small cohesion, owing
to the increase of the apparent friction between grains, the proportion of sliding
contacts decreases which induces expansion of the material. For larger cohesion,
the agglomeration of the grains results in the growth of heterogeneities (large voids
separating dense granular areas), and in the increase of the contact force anisotropy,
which strongly enhances the resistance to the shear. Then, for larger cohesion, the
granular material breaks apart.

This study is a first step toward the understanding of the rheology of cohesive
granular materials. It is clear that further studies are necessary to take into
account other specificities of cohesive forces (range of interaction, hysteresis, viscous
dissipation in liquid bridges, solid bridges...). It would be extremely interesting to
compare those predictions with physical experiments on model materials such as wet
glass beads, or controlled powders in vacuum.
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